ОПЕРАТИВНЫЙ СПОСОБ ПРЕДУПРЕЖДЕНИЯ СТОЛКНОВЕНИЯ СУДОВ С ПОМОЩЬЮ ОБЛАСТИ НЕДОПУСТИМЫХ ПАРАМЕТРОВ ДВИЖЕНИЯ

При опасных сближениях судов высокий риск столкновения в значительной мере обусловлен несовершенными процедурами выявления опасного сближения и оперативного принятия решения по выбору безопасного маневра расхождения в зависимости от степени угрозы столкновения.

В последние годы направлению совершенствования вопросов оценки ситуации опасного сближения и предупреждения возможного столкновения посвящен ряд работ [1 - 4]. В работе [1] показано формирование гибких стратегий расхождения в зависимости от значения ситуационного возмущения, а в работе [2] рассмотрена реализация определенного типа взаимодействия судов в случае опасного сближения при возникновении ситуационного возмущения различного значения. Вопросу определения угрозы ситуационного возмущения при опасном сближении судов посвящена работа [3], а в работе [4] предложена экстренная стратегия расхождения в ситуации чрезмерного сближении судов. Вышеуказанные работы носят теоретический характер, хотя существует потребность в разработке оперативных и простых в применении способов оценки ситуации сближения судов и выбора безопасного маневра расхождения.

Также проведены исследования по проблеме обеспечения безопасного расхождения судов методами внешнего управления с использованием недопустимых областей курсов или скоростей судов [5], которые являются эффективными в практическом судовождении. Предлагаемый подход к решению проблемы предупреждения столкновения судов целесообразно использовать и при локально-независимом управлением процессом расхождения [5], что может обеспечить разработку оперативных и эффективных процедур предупреждения столкновений судов. Этому вопросу и посвящена настоящая статья.

Цель публикации - разработка способа формирования области недопустимых параметров движения оперирующего судна, которая позволяет оценить опасность ситуации сближения судов и в случае необходимости оперативно выбирать маневра расхождения.

При сближении со встречной целью граничной изостадией будем называть линию в системе координат параметров движения судна

(курса K_1 и скорости V_1), в каждой точке которой достигается равенство дистанции кратчайшего сближения $\min D$ с предельнодопустимой дистанцией сближения d_d , при неизменной относительной позиции судна и цели (пеленга α и дистанции D) и постоянных параметрах движениях цели K_2 и V_2 .

Учитывая, что равенство $\min D = d_d$ достигается при относительном уклонении судов как вправо, так и влево относительно направления пеленга, то имеется две граничные изостадии, которые ограничивают область недопустимых параметров движения судна Q_n . В этом случае, если точка (K_{1i} , V_{1i}) принадлежит области Q_n , то сближение судов опасное, так как $\min D < d_d$.

Найдем аналитическое выражение для граничных изостадий. Для этого в равенство $\min D = d_d$ подставляем формулу для $\min D$ [4]:

$$\Delta D\sin(\alpha - K_{ot}) = d_d$$
.

Из последнего равенства:

$$K_{ot} = \alpha - \arcsin \frac{d_d}{\Delta D}$$
.

Введем обозначение $\gamma = \alpha$ - $\arcsin(d_d / \Delta D)$. В зависимости от знака Δ получим:

 $\gamma^{(1)} = \alpha - \arcsin(d_d/\Delta D)$, при $\Delta > 0$ и $\gamma^{(2)} = \alpha + \arcsin(d_d/\Delta D)$, при $\Delta < 0$. Очевидно: $\operatorname{tg} K_{ot} = \operatorname{tg} \gamma^{(1,2)}$, или в развернутом виде [1]:

$$tgK_{ot} = \frac{V_1 \sin K_1 - V_2 \sin K_2}{V_1 \cos K_1 - V_2 \cos K_2} = \frac{\sin \gamma^{(1,2)}}{\cos \gamma^{(1,2)}}.$$

После преобразований последнего выражения получаем зависимость:

$$\sin(K_1 - \gamma^{(1,2)}) = \frac{V_2 \sin(K_2 - \gamma^{(1,2)})}{V_1},$$
(1)

из которой следуют уравнения граничных изостадий, связующих курс судна K_1 с его скоростью V_1 , при которых справедливо равенство $\min D = d_d$, причем для сближения судов на встречных курсах:

$$\begin{split} K_{11}^{(1)} &= \gamma^{(1)} + \arcsin \frac{V_2 \sin(K_2 - \gamma^{(1)})}{V_1}; \\ K_{11}^{(2)} &= \gamma^{(2)} + \arcsin \frac{V_2 \sin(K_2 - \gamma^{(2)})}{V_1}, \end{split} \tag{2}$$

причем необходимо учитывать ограничения на значения скорости судна V_1 . Аргумент $V_2\sin(K_2-\gamma^{(2)})/V_1$ под функцией arcsin не может превосходить 1, следовательно, минимальное значение скорости судна в уравнениях граничных изостадий определяется величиной $V_{\rm 1min}=V_2\sin(K_2-\gamma^{(2)})$.

Аналогично из (1) получаем уравнения граничных изостадий для сближения судов на попутных курсах:

$$K_{12}^{(1)} = \gamma^{(1)} + \pi - \arcsin \frac{V_2 \sin(K_2 - \gamma^{(1)})}{V_1};$$

$$K_{12}^{(2)} = \gamma^{(2)} + \pi - \arcsin \frac{V_2 \sin(K_2 - \gamma^{(2)})}{V_1} \,,$$

причем в данном случае $V_1 \ge V_2 \sin(K_2 - \gamma^{(2)})$.

На рис. 1 приведена область недопустимых параметров движения судна Q_n и граничные изостадии, которые ограничивают ее. Предельные изостадии рассчитаны для ситуации сближения судов на встречных курсах с помощью выражений (2) для следующих значений параметров ситуации сближения: α =140 °; D =4 мили; d_d =1 миля; K_1 =100 °; V_1 =15 узлов; K_2 =350 °; V_2 =20 узлов.

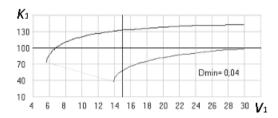


Рис. 1. Область недопустимых параметров движения судна Q_n

С помощью области Q_n имеется возможность оценить является ли сближение опасным с точки зрения возникновения угрозы столкновения, т. е. имеет ли место неравенство $\min D < d_d$. Для этого необходимо оценить положение точки (K_1 , V_1), соответствующей параметрам движения судна, относительно области Q_n . Из рис. 1 видно, что данная точка принадлежит области недопустимых параметров движения судна Q_n , при этом $\min D < d_d$ и $\min D = 0.04$ мили. Следовательно, для предупреждения столкновения следует предпринять ма-

невр расхождения. С помощью области Q_n можно выбрать расхождение судов маневром изменением курса судна при неизменной скорости. Для выбора курса уклонения K_{1y} , обеспечивающего $\min D=1{,}00$ мили, необходимо найти точку пересечения вертикальной линии V_1 =15 узлов с граничными изостадиями и определить соответствующий курс уклонения отворотом вправо или влево. Так, на рис. 2 показан курс уклонения судна отворотом вправо, причем K_{1y} =132 °.

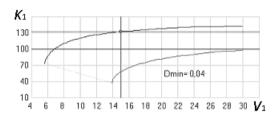


Рис. 2. Выбор безопасного курса уклонения $K_{1\nu}$

Как следует из вышеизложенного, использование области недопустимых параметров движения судна, заключенной между двумя граничными изостадиями, позволяет, во-первых, оценить ситуацию сближения судов и, во-вторых, при опасном сближении оперативно выбрать безопасный маневр расхождения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Цымбал Н.Н. Гибкие стратегии расхождения судов / Н.Н. Цымбал, И.А. Бурмака, Е.Е. Тюпиков. Одесса: КП ОГТ, 2007. 424 с.
- 2. Пятаков Э.Н. Взаимодействие судов при расхождении для предупреждения столкновения / Пятаков Э.Н., Бужбецкий Р.Ю., Бурмака И.А., Булгаков А.Ю. Херсон: Гринь Д.С., 2015. 312 с.
- 3. Пятаков Э.Н. Оценка эффективности парных стратегий расходящихся судов/ Пятаков Э.Н., Заичко С.И. // Судовождение. -2008. № 15. С. 166 -171.
- 4. Бурмака И.А. Экстренная стратегия расхождения при чрезмерном сближении судов / Бурмака И.А., Бурмака А. И., Бужбецкий Р.Ю. LAP LAMBERT Academic Publishing, 2014. 202 с.
- 5. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков LAP LAMBERT Academic Publishing, Саарбрюккен (Германия). 2016. 585 с.